Satellite views of Pacific chlorophyll variability: Comparisons to physical variability, local versus nonlocal influences and links to climate indices

نویسندگان

  • Andrew C. Thomas
  • P. Ted Strub
  • Ryan A. Weatherbee
  • Corinne James
چکیده

Concurrent satellite-measured chlorophyll (CHL), sea surface temperature (SST), sea level anomaly (SLA) and model-derived wind vectors from the 13þ year SeaWiFS period September 1997–December 2010 quantify time and space patterns of phytoplankton variability and its links to physical forcing in the Pacific Ocean. The CHL fields are a metric of biological variability, SST represents vertical mixing and motion, often an indicator of nutrient availability in the upper ocean, SLA is a proxy for pycnocline depths and surface currents while vector winds represent surface forcing by the atmosphere and vertical motions driven by Ekman pumping. Dominant modes of variability are determined using empirical orthogonal functions (EOFs) applied to a nested set of domains for comparison: over the whole basin, over the equatorial corridor, over individual hemispheres at extra-tropical latitudes (4201) and over eastern boundary current (EBC) upwelling regions. Strong symmetry exists between hemispheres and the EBC regions, both in seasonal and non-seasonal variability. Seasonal variability is strongest at mid latitudes but non-seasonal variability, our primary focus, is strongest along the equatorial corridor. Non-seasonal basin-scale variability is highly correlated with equatorial signals and the strongest signal across all regions in the study period is associated with the 1997–1999 ENSO cycle. Results quantify the magnitude and geographic pattern with which dominant basin-scale signals are expressed in extra-tropical regions and the EBC upwelling areas, stronger in the Humboldt Current than in the California Current. In both EBC regions, wind forcing has weaker connections to non-seasonal CHL variability than SST and SLA, especially at mid and lower latitudes. Satellite-derived dominant physical and biological patterns over the basin and each sub-region are compared to indices that track aspects of climate variability in the Pacific (the MEI, PDO and NPGO). We map and compare the local CHL footprint associated with each index and those of local wind stress curl, showing the dominance in most areas of the MEI and its similarity to the PDO. Principal estimator patterns quantify the linkage between dominant modes of forcing variability (wind, SLA and SST) and CHL response, comparing local interactions within EBC regions with those imposed by equatorial signals and mapping equatorial forcing on extra-tropical CHL variability. & 2012 Elsevier Ltd. All rights reserved.

منابع مشابه

Local versus non-local atmospheric weather noise and the North Pacific SST variability

[1] The interactive ensemble coupling strategy has been developed specifically to determine how noise impacts climate variability within context of coupled general circulation model (CGCM). This study examines the impacts of local versus non-local noise on the North Pacific sea surface temperature anomaly (SSTA) variability using three CGCM simulations. The control run uses the standard couplin...

متن کامل

The Impact of Climate Change on Grain Yield and Yield Variability in Iran

In this paper, we have examined the effect of climate variables on the yield average and variability of major grain crops (rice, maize, and wheat) in Iran from 1983 to 2014. For this purpose, we made use of the Just and Pope Production Function crop yields panel data. The results revealed that the influences of climate variables were different in the crops. The time trend positively influenced ...

متن کامل

Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity

Global climate change is predicted to alter the ocean’s biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and a...

متن کامل

Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean

Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but...

متن کامل

Spatial patterns of intraseasonal variability of chlorophyll and sea surface temperature in the California Current

[1] Six years of daily satellite data are used to quantify and map intraseasonal variability of chlorophyll and sea surface temperature (SST) in the California Current. We define intraseasonal variability as temporal variation remaining after removal of interannual variability and stationary seasonal cycles. Semivariograms are used to quantify the temporal structure of residual time series. Emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012